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The reaction of two symmetrical bifunctional reactants A-A and B-B to give monomeric rings (two- 
component ring closure) has been simulated by means of two complementary kinetic models. These 
provide underestimated and overestimated values, respectively, of the yields of ring product as a 
function of both the initial concentration of monomers in batch processes and their rate of feed into 
the reaction medium in influxion processes (Ziegler high dilution conditions). The merits and 
limitations of the two models are discussed. Comparison with analogous results previously reported 
for the reaction of unsymmetrical bifunctional reactants A-B (one component ring-closure) shows 
that more stringent dilution requirements are to be met by the two-component reaction system. The 
merging of the influxion conditions into the batch-wise ones has also been investigated. It is shown 
that this occurs on increasing the feed rate beyond a certain critical value. Above this value the 
system can seemingly display an intriguing insensitivity to dilution. 

Macrocycles are usually prepared either by ring closure of 
unsymmetrical bifunctional chains of the type A-B, or, in most 
cases, by reaction of two symmetrical monomers of the type 
A-A and B-B.* In both cases the competitive polymerisation 
process limits the yield of the ring being formed, thus making 
the outcome of a macrocyclisation procedure hardly predictable 
without resorting to kinetic models in which simultaneous 
cyclisation and polymerisation are taken into account. The 
tremendous complexity of the general problem imposes 
simplifying approximations,' but the requirement for the results 
of the calculations to be widely applicable to real systems 
severely limits the kind and number of approximations allowed. 

In previous papers we have thoroughly investigated the 
problems connected with the kinetic treatment of the 
irreversible reaction of a reactant of the type A-B.3-5 Our 
efforts culminated with the development of a computer pro- 
gram (CYCLES) able to predict the distribution of cyclic products 
at various levels of appr~ximation.~ 

As a first step in the inclusion in the CYCLES program of the 
two-component ring closure A-A + B-B, carried out both 
under batch-wise and influxion conditions, we report here two 
complementary kinetic models, which describe the reacting 
system at the lowest level of approximation in that only the 
formation of the monomeric ring is explicitly taken into 
account. The merits and limitations of the two models are 
presented and discussed. 

Kinetic Treatment and Results 
The Overestimating Model (OM).-In the following treat- 

ment it will be assumed that A and B are two different functional 
groups each capable of reacting irreversibly only with the 
other, and whose inherent reactivity (kinter) is independent of 
the size of the molecule to which they are attached.6 Here kinter 
may be defined with reference to a model reaction between 
monofunctional reactants, namely, -A + B-, where the nature 
of the residues attached to the A and B functionalities resemble 
as closely as possible that of the chains connecting the end 
groups in A-A and B-B, respectively. It will be also assumed 
that the system is homogeneous throughout the entire course 
of the reaction. 

Let us consider the simplified kinetic model outlined in 

MA + MB-MAB 

\ MAB ~ p A B  

ME , MA , p A B  
/-b PAB 

PA \ MA' , P A  PB \ MAB , p B  

PA + PB- PAB 

Scheme 1. 

Scheme 1, where MA, MB, and MAB represent the acyclic 
monomers A-A, B-B, and A-AB-B; PA, PB, and PAB, the 
acyclic polymers A-(AB-BA-),, A, B-(BA-AB-),, B and 
A-A(B-BA-A),,B-B, with n > 1; and C, the cyclic monomer. 
In Scheme 1 the polymer PAB has no influence on the reaction 
course, thus implying that PAB may be viewed as being either 
unreactive or capable of undergoing only intramolecular 
reactions. This is equivalent to saying that the effective 
molarities (vide infra) of the polymeric rings are infinitely large. 
As a consequence, Scheme 1 overestimates the yield of C, in that 
it does not take into account the amounts of MA, MB, and MAB 
diverted into polymeric products by reaction with PAB. For this 
very reason we indicate the kinetic model outlined in Scheme 1 
as being the overestimating model. 

The set of rate equations relative to the OM can be 
formulated as follows: 

d[MA]/dt = -2kinte,[MA](2[MB] + [MAB] + 2[PB]) (1) 

t For Part 27, see ref. 1. 
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d[PA]/dt = 2kinte,[MA][MA”] 

-4kinterCPAI(CMBI + CPBI) ( 5 )  

d[PB]/dt = 2kinter[M”][MAB] 

-4kinterCPBl(CMAl + [PA]) (6) 

where kintra is the specific rate for cyclisation of MA”. Deriv- 
ation of the statistical factors appearing in the rate equations 
is straightforward, apart from those related to the dimerisation 
of MAB which deserve a comment. Indeed, one must pay 
attention to the fact that two molecules of MA” disappear 
upon dimerisation and that the specific rate for dimerisation 
is simply kinter.3 

Since the critical parameter to characterise intramolecular 
reactions is the effective molarity (EM), defined as the ratio 
kintra/kinter,7*8 it is convenient to divide equations (1)-(6) by a 
dimensionless constant f of the same numerical value as kinter. 
This operation changes the time scale (t’ = f t )  and makes the 
terms kintra and kinter numerically equal to EM and 1 
respectively. The set of equations (1)-(6) therefore simplifies to 
equations (7H12). 

d[MA]/dt’ = -2[MA](2[MB] + [MA”] + 2[PB]) (7) 

d[MB]/dt’ = -2[MB](2[MA] + [MA”] + 2[PA]) 

d[MAB]/dt‘ = 4[MA][MB] - EM[MAB] 

(8) 

-2[MA”]([MA] + [M”] + [MA”] + [PA] + [P”]) (9) 

d[C]/dt’ = EM[MAB] 

d[PA]/dt’ = 2[MA][MAB] - 4[PA]([MB] + 
d[PB]/dt’ = 2[MB][MAB] - 4[PB]([MA] + 

The Underestimating Model (UM).-Let 
the kinetic model outlined in Scheme 2. 

MA + MB-MAB 

MAB LY: 
rM 1;;” 

PA /+ + PA PB /* PB 
p B  

PA + PB - PAB 

,z+ PA 

\ PA’ , p A B  

Scheme 2. 

In Scheme 2 the polymer pAB is assumed to undergo only 
intermolecular reactions, which is equivalent to saying that the 
EMS of the polymeric rings are zero. Neglecting the 
intramolecular reactions of pAB, Scheme 2 exaggerates the 
probability of intermolecular reactions between PA” and the 
other acyclic species, and consequently underestimates the 
yield of cyclic monomer C. 

The set of rate equations relative to the underestimating 
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model, after introduction of the normalizing factor ,I; can be 
formulated as follows: 

d[MA]/dt’ = -2[MA](2[MB] + 
[MA”] + 2[PB] + [PA”]) (13) 

[MA”] + 2[PA] + [PA”]) (14) 
d[MB]/dt’ = -2[MB](2[MA] + 

d[MAB]/dt’ = 4[MA][MB] - EM[MAB] - 2[MAB]([MA] 
+ [M”] + [MA”] + [PA] + [PSI + [PA”]) 

d[C]/dt’ = EM[MAB] 

d[PA]/dt’ = 2[MA]([MAB] + [PA”]) - 4[PA]([MB] 
+ I?”]) 

+ [PA]) 
d[PB]/dt’ = 2[MB]([MAB] + [PA”]) - 4[PB]([MA] 

d[PAB]/dt’ = 4[MA][PB] + 4[MB][PA] + [MABIZ 
+ 4[PA][PB] - [PAB](2[MA] + 2[MB] + 2[PA] 

+ 2[PB] + [PA”]) 

The considerations made for the dimerisation of MA” also 
hold for the dimerisation of PA”. 

Butch-wise Procedure.-According to the batch-wise pro- 
cedure m mol of the monomer MA and n mol of the monomer 
MB are added all at once to a volume V of solvent, where the 
proper conditions are set. Since higher yields of C are obviously 
obtained when m = n, only this case will be considered. At 
time t = 0 a batch-wise experiment is therefore characterized 
by the initial concentration [MAI0 = [MBl0 = m/V, the 
concentration of all other species being zero. By virtue of the 
equal initial concentrations of MA and M”, and of the 
symmetry of the reacting system, [MA] = [M”] and [PA] = 
[P”] over the entire course of the reaction. These equalities 
considerably simplify the two sets of rate equations (7)-(12) 
and (13)-(19); in particular equations (8), (12), (14), and (18) 
become superfluous because they are coincident with equations 
(7), ( l l) ,  (13), and (17), respectively. The two reduced sets 
[equations (7) and (9H12) and equations (13), (15H17), and 
(19), respectively] were numerically integrated by the fourth 
order Runge-Kutta m e t h ~ d , ~  for a number of [MAl0 and EM 
values varying over wide ranges, to afford the corresponding 
values of the final concentration of the cyclic monomer ([C],). 
The percent yield of C, calculated by the equation %C = 
lOO[C] ,/[MAlo, depends exclusively on the dimensionless 
parameter a, which is defined by the ratio [MA]/,/EM and can 
be viewed as a reduced initial concentration. The results are 
reported in Figure 1 as plots of %C us. a. The two curves which 
refers to the OM and the UM, interpolate the solutions 
obtained by numerical integration (ca. 50 points for each curve) 
with a standard deviation syx = 0.20. Both the curves are 
described by the empirical equation %C = 100/(1 + aab + 
cad) with the following parameters: OM, a = -2.18; b = 1.01; 
C =  4.57; d = 0.914. UM, u = 8.61 x 1W2; b = 1.50; c = 2.98; 
d = 0.804. 

InJIuxion Procedure.-In the influxion procedure, which 
corresponds to the well-known Ziegler high-dilution technique,2 
the monomers MA and MB are slowly and simultaneously 
introduced into the reaction medium in order to prevent their 
accumulation. An influxion experiment is therefore character- 
ized by the feed rates of MA and M”. However, by analogy with 
the batch-wise experiments, only the case in which the feed rates 
of MA and MB are equal will be considered. The feed rate uf  (in 
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Figure 1. Percentage yield of monomeric ring as a function of a for 
the A-A + ELB reaction. The upper curve refers to the OM and the 
lower curve to the UM. 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

I 

0 
lo-& 1 lo2 

P 
Figure 2. Percentage yield of monomeric ring as a function of f3 for 
the A-A + B-B reaction. The upper curve refers to the OM and the 
lower curve to the UM. 

mol dm-3 s-’) is defined in terms of the number of moles of MA 
( r M ” )  added per second per dm3 of reaction solution. It is 
assumed that this addition does not change the volume of the 
reaction medium to a significant extent. 

In order to adapt the two reduced sets of rate equations [(7) 

and (9)-( 1 1) and (1 3), (1 5H 17), and (19)] to the influxion case, 
the term v f p  (= v f / f )  must be added to the left-hand side of 
equations (7) and (13). Numerical integration of the two systems 
of rate equations shows that after a certain amount of time a 
steady state is reached for all of the reacting species. The 
assumption is made that the steady state is maintained long 
enough to render negligible the amount of C formed in the 
initial part (i.e. before the steady state is reached) and in the 
final part (i.e. after the addition of reactants is stopped) of 
the experiment. Therefore, in order to calculate the yield of 
the cyclic monomer C, one only needs the steady state con- 
centration of MA’ ([MA”],,). This can be obtained by either 
the numerical integration procedure or solving numerically the 
two systems of algebraic equations obtained by setting equal to 
zero the derivatives of the concentration of the reacting species. 
The two methods gave coincident results. The percent yield 
of C calculated by the equation %C = 100EMIMAB],,/vs., 
depends exclusively on the dimensionless parameter p, defined 
as u//~~,,,,EM’ (= us./EM2). The dependence of %C on p is 
shown for the two models in Figure 2. The numerical results 
(ca. 100 points for each model) were interpolated by an 
equation which has the same form as that relative to the batch- 
wise case, i.e. %C = l00/(l + apb + cpd), with the following 
parameters: OM, a = 3.78; b = 0.503; c = 0.141; d = 0.403 
(sYx = 0.02). UM, a = 1.24; b = 0.238; c = 4.63; d = 0.545 
(syx = 0.1 1). 

Discussion 
Before discussing the present results it is appropriate to briefly 
review previous work on the subject. 

A computerised game based on Monte Carlo calculations 
was used by German authors” to simulate an influxion 
procedure in which the formation of cyclic monomer and dimer 
was taken into account. Apart from the fact that statistical 
factors for the intermolecular reactions were totally neglected 
and that the same EM value was attributed to both the cyclic 
monomer and dimer, a major limitation arises from the fact 
that the units of the independent variables were not clearly 
defined, thus making reaction parameters hardly related to 
actual systems in terms of time, concentrations, feed rate, and 
the like. 

and Szwarc,I2 based on 
the solution of rate equations, are more significant from a 
quantitative point of view. Fastrez” considered a number of 
cases. Some of them, such as the influxion procedure in absence 
of cyclization or when all of the EMS of the various cyclo- 
oligomers are identical, are amenable to analytical solution, 
but cannot be related to actual cases. More significant are the 
cases (influxion and batch-wise), treated by numerical methods, 
where the EMS of the various rings are considered to be 
different. Indeed, extended kinetic schemes taking into account 
the formation of a number of polymeric rings, such as that 
proposed by Fastrez for the case A-A + B-B, as well as by us 
for the case A-B,3,5 can afford accurate predictions not only 
about the yield of the cyclic monomer but also about the yields 
of the various polymeric rings. However, such extended 
schemes require knowledge of the EMS of all the rings under 
consideration. Since, unless the monomeric ring is sufficiently 
large,* there is no relation between its effective molarity and 

The recent approaches of Fastrez 

* In general, a cycle with >ca. 25 ring atoms can be considered as 
practically strainless and its EM determined solely by the con- 
formational entropy change upon cyclisation. According to Kuhn’s 
theory,13 the effective molarities for cyclisation of a series of chains 
obeying Gaussian statistics and leading to strainless cyclic n-mers are 
given by the equation EM, = Note that the effective molarity 
is denoted in Kuhn’s paper by the symbol Cerf (effective concentration). 
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the EMS of the higher cyclo-oligomer, the yield of the cyclic 
monomer should in principle be represented on a multi- 
dimensional plot as a function of the various EM values and 
reaction conditions. This is not, of course, a viable route, and, 
as a matter of fact, only results pertaining to selected sets of 
EM values have been reported. Such results, although very 
useful for illustrating trends in yield distributions of cyclic 
products, are not of general value. 

Similar considerations apply to the work of Szwarc l 2  where 
specific reference was made to the reaction between a living 
polymer endowed with two reactive end groups and a 
bifunctional linking agent, which in our language is the case 
of a A-A + B-B reaction carried out under batch-wise 
conditions and leading to very large strainless rings.* 

Now let us turn to the results reported in this work, 
considering first those related to the batch-wise technique. As 
shown in Figure 1, the two kinetic models of Schemes 1 and 2 
offer two approximate solutions to the problem of finding the 
yield of the cyclic monomer for the reaction A-A + B-B. Since 
the two approximate solutions represent the upper and lower 
limit for the yield of C, the two curves in Figure 1 delimit a 
region in which the actual yield of a cyclisation reaction must 
necessarily lie. This value will be closer to the OM (or to the 
UM) curve whenever the initial monomer concentration is 
small (or large) compared to the EM values of the next higher 
oligomers. In any event, it is remarkable how narrow is the 
region between the two profiles of Figure 1, which means that 
even the crudest level of approximation can lead to rather 
accurate predictions of yields of cyclic monomer, without any 
assumption being required about the EM values of the poly- 
meric rings. 

To profit from the above results, a knowledge of the EM of 
the monomeric ring is required. In the absence of the required 
kinetic data, a rough estimate for ring sizes up to cu. 25 may 
be based on the large body of available experimental data,' 
whereas for larger ring sizes reliable theoretical calculations are 
possible.'3*'4 On the other hand, Figure 1 itself can provide an 
estimate for the EM, provided that reliable yield data are 
available from preliminary experiments. Figure 1 is also useful 
for pointing out the limitations of the batch-wise procedure. 
Indeed, if one considers as still acceptable a yield of 50%, it is 
readily seen that this corresponds to an a value of cu. 0.3, which 
means that rings with EMS <0.03 mol dm-3 cannot be 
synthesised in reasonably high yield in batch processes, because 
reactant concentrations < 1  x 1w2 mol dm-3, i.e. too low for 
most practical purposes, should be used. This indicates that the 
batch-wise procedure can be still conveniently employed for 
the synthesis of large, strainless rings whose EMS lie almost 
invariably in the range 0.14.01 mol dm-3, with a definite 
tendency to cluster in the region of 0.03 mol dm-3.8 But in the 
case of the strained medium rings, for which typical EMS are in 
the range of 10-3-10-5 mol dm-3, or even lower,8 the fate of a 
batch process is to afford a few percent yield of the desired 
ring, if any. 

Let us now consider the influxion case. Here again we see 
that the curves corresponding to the two models (Figure 2) 
delimit a region where the actual yield will necessarily lie. This 
value will be more or less proximate to either curve, depending 
on the relative value of the steady concentration of monomers 
with respect t o  the EM values of the next higher oligomers. We 
note, however, that the region between the two curves turns 
out to be much wider than that found for the batch-wise case 
(Figure 1). In spite of the lower predictive power of Figure 2, 
the general behaviour of the curves allows some interesting 
features to be delineated. 

The preparative usefulness of the influxion technique, as 
compared to the batch-wise one, is largely dependent on the 
value of kinter. In fact, the significant amount of solvent saved 

too 

90 

80 

70 

60 

y 50 

40 

30 

20 

10 

0 

0' 

lo-' 10 103 
a 

Figure 3. Percentage yield of monomeric ring as a function of a for 
the A-B reaction. The upper curve refers to the OM and the lower 
curve to the UM. 
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Figure 4. Percentage yield of monomeric ring as a function of p for 
the A-B reaction. The upper curve refers to the OM and the lower 
curve to the UM. 

in an influxion experiment us. the amount required in the 
corresponding batch process, must be necessarily paid with a 
more prolonged reaction time. It emerges from the definition of 

* See footnote on p. 749. 
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p that in order to reduce this time to a minimum, kinler should 
be as large as possible. One should also note that an inherently 
faster reaction will give, other things being equal, a higher yield 
of cyclic monomer. A numerical example illustrates well the 
above points. If we want a given two-component ring closure 
reaction to afford the desired monomeric ring in yield not 
< 50%, the parameter p, as estimated from Figure 2, should be 
not >ca. 4 x lW2. Since feed rates < 1 x 1W6 mol dm-3 s-' 
(corresponding, e.g., to the addition of 0.1 mol of MA and MB 
to 1 dm3 of solvent in ca. 28 h) are obviously undesirable, it is 
easily seen that monomeric rings with EM < 5  x mol 
dmb3 are hardly accessible by reaction of two symmetrical 
monomers if the inherent reactivity of functional groups kinter 
is < 1 dm3 mol-' s-'. In fact, a five-fold lower EM would require 
a 25-fold lower feed rate, which corresponds in the given 
example to a total addition time of ca. 1 month. It is clear that 
with highly disfavoured rings the only viable route is to increase 
the inherent reactivity of end groups as much as possible. This 
can be accomplished by the resourceful use of all available 
principles and rules governing the activation of reacting groups. 

One-component vs. Two-component Ring Closure.-It is of 
interest to compare the results from the present work with 
analogous results previously reported for the one-component 
ring closure of unsymmetrical bifunctional chains A-B.3*5 
These are plotted in Figures 3 and 4 for the batch-wise and 
influxion procedure, respectively.* Yield profiles as a function 
of the parameters a and p were calculated on the basis of both 
the U M  and OM at the lowest level of approximation, which 
renders the results for closure of A-B chains strictly compar- 
able to those related to the two-component ring closure 
A-A + B-B. Inspection of Figure 1 us. Figure 3, and of 
Figure 2 us. Figure 4 shows that the general dependence of 
yields on the dilution parameters a and f3 is broadly similar in 
the two cases, but there are important differences. The profiles 
for the two-component ring closure are somewhat shifted 
towards lower a and p values relative to the one-component 
system. For example, the percent yields predicted when a = 1 
by the U M  and OM for the one-component cyclisation under 
batch-wise conditions are 46.7 and 54.9, respectively (Figure 3), 
but the corresponding figures drop to 24.7 and 29.8 (Figure 1) 
for the two-component cyclisation. Differences are even more 
marked for the influxion case in that when p = 1 the yields are 
44.2 and 50 for the one component cyclisation (Figure 4), but 
reduce to 14.5 and 20.3 for the two component reaction 
(Figure 2). Thus the obvious advantage of working with more 
readily accessible symmetrical reactants is offset by more 
stringent dilution requirements. It therefore appears that, other 
things being equal, rings which are difficult to form should 
be more easily synthesised by one-component ring closure 
reactions, particularly when the influxion technique is the 
procedure of choice. 

Merging of Influxion into Batch-wise Conditions.-Our 
calculations have been based on the assumption that in 
influxion experiments the steady state is maintained long 
enough so as to render negligible the amounts of product 

* The curve in Figure 3 which interpolates the numerical solutions 
of the UM batch-wise is described by the empirical equation 
%C = lOO/(l + aab + cad) with the following parameters: 
a = -1.55 x 1C2;b = 1 . 6 1 ; ~  = 1.15;d = 1.02(s,, = 0.21).Although 
in our previous work3 a different fitting equation was suggested, we 
prefer this one because it has the same form as those reported in this 
work. As for the other curves reported in Figures 3 and 4, they refer to 
analytical  solution^.^*^ 
t It can be shown that strictly analogous conclusions are reached using 
the UM set. 
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Figure 5. Merging of influxion into batch-wise conditions (see the text). 

formed before the steady state is reached and after the addition 
of reactants is stopped. Indeed this assumption raises two 
principal questions: (i) In actual experiments is the steady state 
reached at all? (ii) If it is reached, how can one be sure that it will 
last long enough? In order to answer the above questions, a 
numerical example is appropriate. Let us suppose that the 
starting materials to submit to influxion are 10 mmol of MA and 
MB; the volume of the reaction medium is 1 dm3; the EM of the 
cyclic monomer, 0.01 mol dm-3; and kinten 1 dm3 mol-' s-'. 
With these data let us calculate the yield of C as a function of 
the feed rate by numerically integrating the OM set? of rate 
equations up to completion of the reaction, no matter whether 
the steady state is reached or not. The results are plotted against 
p in Figure 5 [curve (a)]. For comparative purposes the upper 
curve of Figure 2 has been reproduced in Figure 5 [curve (b)].  
It appears that curve (a) is always higher than that calculated 
by the steady state assumption, the difference between the two 
curves becoming smaller as the feed rate decreases. In general, 
whenever the feed rate increases, the influxion procedure 
approaches the batch-wise procedure, in that curve (a) tends to 
a limiting value of the yield which is exactly that corresponding 
to the instantaneous addition of MA and MB into the reaction 
medium. Since such addition, in the given example, corresponds 
to a = 1, the limiting value of the yield (29.8%) coincides with 
that calculated from the upper curve of Figure 1. The horizontal 
line corresponding to %C = 29.8 intersects curve (b) at a value 
of p which is critical (per), i.e. when p > p,,, those values which 
were intended to be influxion conditions turn out to be batch- 
wise conditions (or very nearly so), whereas when p < PET, 
curve (a) is satisfactorily approximated by curve (b) which 
describes the influxion behaviour. In conclusion, to profit from 
the results of Figure 2, one does not need to worry about the 
fulfilment of the steady state assumption, but should bear in 
mind that Figure 2 is significant only for p < p,,. The value of 
p,, can be evaluated for any particular reaction system as 
follows: (i) calculate the value of a corresponding to the 
instantaneous addition of the monomers; (ii) evaluate by means 
of Figure 1 the %C value (%C,,) as given by one of the two 
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models corresponding to the calculated O! value; and (iii) 
evaluate the p value (p,,) corresponding to %CbW, by using the 
curve in Figure 2 which refers to the same model. Although p,, 
evaluated by the two models is not exactly the same, it should 
be clear, as Figure 3 shows, that p,, is not a point of 
discontinuity but rather the approximate centre of a region in 
which the influxion procedure merges into the batch-wise one. 
Of course, strictly analogous considerations hold for the one- 
component ring closure as well. 

When an influxion experiment is carried out in the absence 
of any information about the quantities EM and kinter, which is 
likely to be most often the case, it may well happen that the 
various parameters combine in such a way that the system is 
actually described by a point in the flat portion of curve (a )  
(Figure 5) .  When this is the case, the system can seemingly 
display an intriguing insensitivity to dilution, which might well 
mislead the experimenter to postulate the operation of special 
effects, such as template effects, and the like. 

Conclusions 
In spite of the inherent complexity of systems in which 
polymerisation significantly competes with cyclisation, ap- 
proximate kinetic models, amenable to numerical solution, 
predict in a satisfactory manner yields of ring products that 
can be obtained under a given set of experimental conditions. 
The advantage of the proposed models is that maximum-error 
estimates of the calculated yields are immediately available by 
comparing results from the UM with those from the OM. 
Besides providing a background for the correct interpretation 
of cyclisation experiments, the results can supply the synthetic 
chemist with useful guidelines for the search of optimum 
reaction conditions, in terms of the concentration of reactants 
in batch processes, or in terms of rate of feed in influxion 
experiments. 

More or less marked deviations from the yield range whose 
boundaries are predicted by the two models are to be expected 
in a number of cases, i.e. when: (i) the requisite of independent 
reactivity of the terminal groups is not satisfied; (ii) the reaction 
medium is not homogeneous; (iii) side-reactions occur; (iv) the 

reaction is not carried out to completion; and (v) a yield- 
enhancing effect operates. 

It should be clear that the latter case should manifest itself 
by experimental yields of monomeric rings lying significantly 
above the curve of the OM. This would be good evidence with 
which to sustain the validity of yield-enhancing effects which 
have been claimed to operate in certain macrocycle 
~yntheses,~.’ such as the caesium effect, hydrophobic coiling, 
the rigid group principle, the gauche effect, as well as some of 
the template effects. 
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